第五章 空間解析幾何(數(shù)一)
1、向量的運(yùn)算(加減、數(shù)乘、數(shù)量積、向量積)
2、直線與平面的方程及其關(guān)系
3、各種曲面方程(旋轉(zhuǎn)曲面、柱面、投影曲面、二次曲面)的求法
第六章 多元函數(shù)微分學(xué)
1、二重極限和二元函數(shù)連續(xù)、偏導(dǎo)數(shù)、可微及全微分的定義
2、二元函數(shù)偏導(dǎo)數(shù)存在、可微、偏導(dǎo)函數(shù)連續(xù)之間的關(guān)系
3、多元函數(shù)偏導(dǎo)數(shù)的計(jì)算(重點(diǎn))
4、方向?qū)?shù)與梯度
5、多元函數(shù)的極值(無(wú)條件極值和條件極值)
6、空間曲線的切線與法平面、曲面的切平面與法線
第七章 多元函數(shù)積分學(xué)(除二重積分外,數(shù)一)
1、二重積分的計(jì)算(對(duì)稱性(奇偶、輪換)、極坐標(biāo)、積分次序的選擇)
2、三重積分的計(jì)算(“先一后二”、“先二后一”、球坐標(biāo))
3、第一、二類曲線積分、第一、二類曲面積分的計(jì)算及對(duì)稱性(主要關(guān)注不帶方向的積分)
4、格林公式(重點(diǎn))(直接用(不滿足條件時(shí)的處理:“補(bǔ)線”、“挖洞”),積分與路徑無(wú)關(guān),二元函數(shù)的全微分)
5、高斯公式(重點(diǎn))(不滿足條件時(shí)的處理(類似格林公式))
6、斯托克斯公式(要求低;何時(shí)用:計(jì)算第二類曲線積分,曲線不易參數(shù)化,常表示為兩曲面的交線)
7、場(chǎng)論初步(散度、旋度)
第八章 微分方程
1、各類微分方程(可分離變量方程、齊次方程、一階線性微分方程、伯努利方程(數(shù)一、二)、全微分方程(數(shù)一)、可降階的高階微分方程(數(shù)一、二)、高階線性微分方程、歐拉方程(數(shù)一)、差分方程(數(shù)三))的求解
2、線性微分方程解的性質(zhì)(疊加原理、解的結(jié)構(gòu))
3、應(yīng)用(由幾何及物理背景列方程)
第九章 級(jí)數(shù)(數(shù)一、數(shù)三)
1、收斂級(jí)數(shù)的性質(zhì)(必要條件、線性運(yùn)算、“加括號(hào)”、“有限項(xiàng)”)
2、正項(xiàng)級(jí)數(shù)的判別法(比較、比值、根值,p級(jí)數(shù)與推廣的p級(jí)數(shù))
3、交錯(cuò)級(jí)數(shù)的萊布尼茲判別法
4、絕對(duì)收斂與條件收斂
5、冪級(jí)數(shù)的收斂半徑與收斂域
6、冪級(jí)數(shù)的求和與展開(kāi)
7、傅里葉級(jí)數(shù)(函數(shù)展開(kāi)成傅里葉級(jí)數(shù),狄利克雷定理)
以上是小編為大家整理的考研高等數(shù)學(xué)必看知識(shí)點(diǎn),以供大家查看了解,若想了解更多考研輔導(dǎo)資料,如考研試題、考研技巧等,請(qǐng)關(guān)注唯學(xué)網(wǎng)考研欄目,小編會(huì)第一時(shí)間為你更新最新內(nèi)容。
|
|
||
|
|
||
|
|