高等數學是讓許多考生頭疼的一門科目,同時也是考研數學中比例較大的一門科目?佳袀淇家呀涍M入到了最后的沖刺階段,為了幫助考生在最后的時間內將高等數學復習好,唯學網小編為考生們整理了高等數學的重要知識點,希望對考生們能有所幫助。
第一章 函數、極限與連續(xù)
1、函數的有界性
2、極限的定義(數列、函數)
3、極限的性質(有界性、保號性)
4、極限的計算(重點)(四則運算、等價無窮小替換、洛必達法則、泰勒公式、重要極限、單側極限、夾逼定理及定積分定義、單調有界必有極限定理)
5、函數的連續(xù)性
6、間斷點的類型
7、漸近線的計算
第二章 導數與微分
1、導數與微分的定義(函數可導性、用定義求導數)
2、導數的計算(“三個法則一個表”:四則運算、復合函數、反函數,基本初等函數導數表:“三種類型”:冪指型、隱函數、參數方程;高階導數)
3、導數的應用(切線與法線、單調性(重點)與極值點、利用單調性證明函數不等式、凹凸性與拐點、方程的根與函數的零點、曲率(數一、二))
第三章 中值定理
1、閉區(qū)間上連續(xù)函數的性質(最值定理、介值定理、零點存在定理)
2、三大微分中值定理(重點)(羅爾、拉格朗日、柯西)
3、積分中值定理
4、泰勒中值定理
5、費馬引理
第四章一元函數積分學
1、原函數與不定積分的定義
2、不定積分的計算(變量代換、分部積分)
3、定積分的定義(幾何意義、微元法思想(數一、二))
4、定積分性質(奇偶函數與周期函數的積分性質、比較定理)
5、定積分的計算
6、定積分的應用(幾何應用:面積、體積、曲線弧長和旋轉面的面積(數一、二),物理應用:變力做功、形心質心、液體靜壓力)
7、變限積分(求導)
8、廣義積分(收斂性的判斷、計算)